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Abstract

Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material

interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of

crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the

interface peel and shear stresses are ignored and thus a ‘‘rigid’’ joint is used, the present study introduces two interface

compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic

foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces,

deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the

crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can

improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions

and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and

stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF

are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full

continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable,

while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam

analyses (e.g., delamination buckling and vibration, etc.).

� 2004 Elsevier Ltd. All rights reserved.
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1. Background

A bi-material or bi-layer system is a common configuration in structural applications, and it is usually

manufactured by either monolithically forming the two parts together or adhesively bonding the two
substrate layers. Interface fracture or interlaminar delamination is one of most common failure modes in
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this type of layered structures. An elastic joint (crack tip) is formed at the delamination tip of a bi-layer

structure where the delaminated portions are connected together with the uncracked portion. Require-

ment of effective analysis of the local deformation at the crack tip is encountered frequently, such as the

delamination buckling of laminated composites (Chai et al., 1981), data reduction technique of fracture
tests (Wang and Qiao, 2004a), crack identification (Farris and Doyle, 1993), and vibration analysis of

delaminated structures (Brandinelli and Massabo, 2003). A ‘‘rigid’’ joint model is used widely in the

literature (Williams, 1988; Suo and Hutchinson, 1990; Schapery and Davidson, 1990), which assumes

that the cross-sections at the crack tip remain in one plane and perpendicular to the mid-plane of the

virgin beam. This conventional model neglects the elastic deformation of the joint, such as the differ-

ential axial extension of the two beams and the root rotation at the crack tip (Sun and Pandey, 1994)

and thus forms a rigid joint. Extra errors are introduced, and unfavorable results are obtained by such a

conventional split beam model, such as the un-conservative loading of delamination buckling of com-
posites (Shu and Mai, 1993), underevaluated energy release rate of fracture (Sun and Pandey, 1994), and

rough dynamic analysis at the crack tip (Farris and Doyle, 1993). The reason of this unfavorable feature

of the available elastic ‘‘rigid’’ joint model is explained by the nature of the assumptions used in the

beam model, which are unable to describe the severe local deformation at the crack tip of the split beam.

As a matter of fact, the local deformation, which is known as the edge effect, is accounted conven-

tionally by Saint-Venant’s principle. In the cases where the local deformation is of no interest or of little

importance, the conventional rigid joint model is applicable; however, in the cases where the local

deformation is significant, a new and improved model is required to account for the elastic deformation
at the joint (crack tip). Therefore, Farris and Doyle (1993) pointed out that ‘‘a simple scheme to esti-

mate the effective elastic properties of the joint is required’’, and ‘‘this is an area that warrants further

study’’.

Intensive studies have been carried out to accurately model the elastic deformation of a joint (crack

tip). For certain simple split beam problem where the beam is symmetric such as a Double Cantilever

Beam (DCB) specimen commonly used in mode-I fracture testing, a beam on elastic foundation model

proposed by Kanninen (1973, 1974) is usually used in the literature to account for the local defor-

mation at the crack tip (Williams, 1989; Wang and Williams, 1992; Corleto and Hogan, 1995; Ozil and
Carlsson, 1999; Qiao et al., 2003a,b). Excellent agreements with numerical finite element analysis and

experimental testing results could be reached by this method. However, for a general bi-layer cracked

beam, a sub-layer (or sub-laminate in composite laminates) model (Armanios et al., 1986; Wang and

Qiao, 2004b,c) is more suitable. In this type of model, each layer of the virgin beam at the joint is

modeled as a single sub-beam, instead of only modeling the whole uncracked portion as a composite

beam in the conventional way (Suo and Hutchinson, 1990; Schapery and Davidson, 1990). Thus, each

layer has individual rotation and the cross-section at the joint does not remain a plane as assumed in

the conventional composite beam model (Suo and Hutchinson, 1990; Schapery and Davidson, 1990). In
this regard, the joint (crack tip) is deformable and can be analyzed by beam analysis (Wang and Qiao,

2004b). However, the assumption that the interface stresses have no effect on the beam deformation is

used in this model (Wang and Qiao, 2004b) leading to a ‘‘semi-rigid’’ joint scenario at the crack tip

between two sub-layers. Such a semi-rigid joint model requires two concentrated forces which are

nonexistent physically at the crack tip to satisfy the equilibrium condition. Consequently, the local

stress distribution is deviating from the actual condition, and the resulting solution of deformation is

approximate in nature based on the ‘‘semi-rigid’’ joint model (Wang and Qiao, 2004b). Better accuracy

can be achieved by modeling each sub-beam (or sub-laminate) with a higher order beam theory or with
more sub-layers. The later approach is referred as multi-sub-layer model since more than two sub-layers

are considered, such as proposed by Chatterjee et al. (1986) and Chatterjee and Ramnath (1988)

in their study on the mixed mode delamination in composite materials. Improved results could be

obtained by this method on interlaminar stress and energy release rate of delamination in composites
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if more sub-layers were used in the model. This method was later followed by Zou et al. (2001) through

employing the finite element technique, instead of obtaining the governing equation of each sub-layer,

and similar improvement in accuracy was demonstrated in their calculations. A very similar approach

to the sub-layer model used frequently in the literature is the adhesive joint model (Bruno and Greco,
2001). The only difference between the adhesive joint model and the bi-layer beam model is that the

former model employs a linear elastic interface to connect two sub-layers. If the stiffness of interface

layer is infinitely large corresponding to a rigid or perfect bonding along the interface, the adhesive

joint model coincides with the bi-layer or two-sub-layer model discussed above, and therefore, has the

same accuracy.

Some other methods incorporating the crack tip deformation are also available in the literature, which

are not so commonly used. Sun and Pandey (1994) obtained an approximate two-dimensional elastic

solution for the root rotation at the joint (crack tip) of an isotropic and materially homogeneous split beam.
Sundararaman and Davidson (1998) used a torsional spring to describe the deformation at the joint in

order to obtain reasonably accurate results in their analysis of an unsymmetric end-notched flexure spec-

imen, in which the stiffness of the torsional spring was obtained numerically. Shu and Mai (1993) used both

the ‘‘rigid’’ and ‘‘soft’’ joint models to evaluate the upper and lower bounds of buckling and vibration of a

bi-material split beam.

In all the aforementioned investigations, only the model recently developed by the authors (Wang and

Qiao, 2004b) provides a simple closed-form solution for general conditions of a bi-layer beam. However,

the accuracy of the solution is still low compared to the multi-sub-layer model which has no simple closed-
form solution available. To overcome this dilemma, in this study, a novel interface deformable bi-layer

theory is proposed to study the complex deformation in the vicinity of the crack tip. Highly accurate closed-

form solution of the local deformation near the crack tip is obtained by this model without employing a

higher order beam theory or dividing each layer into more sub-layers.

An important application of the crack tip deformation model in interface fracture analysis is discussed in

detail in this study also with aim to account for the transverse shear deformation effects on fracture of

layered structures. As illustrated most recently by Li et al. (2004), the role of transverse shear force on the

interface fracture expressions is fundamentally affected by the local deformation at the crack tip. Although
a full continuum elastic analysis (such as finite element analysis) is required to obtain a rigorous solution for

the shear component of the ERR (Li et al., 2004), it is feasible that the closed-form solutions of interface

fracture considering both the transverse shear and crack tip deformation effects can be obtained analytically

by using a proper beam model (Wang and Qiao, 2004b). Armed with the solution of the local deformation

at the crack tip obtained in this study, improved closed-form solutions of energy release rate (ERR) and

stress intensity factor (SIF) are derived. Compared with the full continuum elasticity analysis, such as finite

element analysis of Li et al. (2004), the present solutions are much explicit, more applicable, and compa-

rable in accuracy.
To make the analysis more portable, a segment near the crack tip (i.e., crack tip element) of a split

(cracked) bi-layer beam is chosen in this study. This segment is essentially a crack tip element as described

by Schapery and Davidson (1990) with a much longer length compared to its thickness so that the far-field

boundary condition effect is negligible. This paper is organized as follows: the analytical framework of a

novel bi-layer beam theory considering the interface compliances is first established, and the resultant forces

and deformations at the crack tip are obtained. To validate the proposed work, the present interface

deformable bi-layer beam solution is compared with other available analytical results and numerical finite

element analysis. Then the energy release rate of a crack along the interface is obtained based on the
deformation solution at the crack tip. The mode decomposition is carried out next, and the explicit

expressions of the ERR and SIF are given. Comparisons of fracture parameters (e.g., the ERR and mode

mixity) with available numerical analyses are carried out to show the high accuracy of the present solution

to interface fracture.
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2. Novel interface deformable bi-layer beam theory

Consider a cracked bi-layer beam under general loading of Fig. 1, where a crack lies along the straight

interface of the top beam ‘‘1’’ and bottom beam ‘‘2’’ with thickness of h1 and h2, respectively. Two beams
are made of homogenous, orthotropic materials, with the orthotropy axes along the coordinate system. The

length of the uncracked region L is relatively large compared to the thickness of the whole beam h1 þ h2,
resulting in the negligible boundary condition effect of the uncracked region on the crack tip is negligible.

The length of the delaminated region is not important since it only changes the resultant forces and bending

moment at the crack tip. Therefore, in this study it is chosen as infinitesimal for the convenience of analysis.

This configuration essentially represents a crack tip element, a small element of a split beam where the

cracked and uncracked portions are joined, on which generic loads are applied, as determined by a global

beam or beam analysis. It is assumed that a beam theory can be used to model the behavior of the top and
bottom layers. A plane stress (beam model) formulation is used in this study, while the plane strain solution

can be directly obtained by substituting the proper stiffness and Poisson’s ratio.

Considering a typical infinitesimal isolated body of the bi-layer beam system (Fig. 2), the following

equilibrium equations are established:
dN1ðxÞ
dx

¼ bsðxÞ; dN2ðxÞ
dx

¼ �bsðxÞ

dQ1ðxÞ
dx

¼ brðxÞ; dQ2ðxÞ
dx

¼ �brðxÞ

dM1ðxÞ
dx

¼ Q1ðxÞ �
h1
2
bsðxÞ; dM2ðxÞ

dx
¼ Q2ðxÞ �

h2
2
bsðxÞ

ð1Þ
where N1ðxÞ and N2ðxÞ, Q1ðxÞ and Q2ðxÞ, M1ðxÞ and M2ðxÞ are the internal axial forces, transverse shear

forces, and bending moments in layers 1 and 2, respectively; b is the width of the beam; h1 and h2 are the

thickness of layers 1 and 2, respectively; rðxÞ and sðxÞ are the interface normal (peel) and shear stresses,

respectively.

By making use of the constitutive equations of the individual layers, we can relate the stress resultants

and displacements of layers as:
Ni ¼ Ai
dui
dx

; Mi ¼ Di
d/i

dx
; Qi ¼ Bi /i

�
þ dwi

dx

�
ð2Þ
where Ai, Bi, and Di (i ¼ 1; 2) are the axial, shear and bending stiffness coefficients of layer i, respectively,
expressed as
Ai ¼ EðiÞ
11bhi; Bi ¼

5

6
GðiÞ

13bhi; Di ¼ EðiÞ
11

bh3i
12
Fig. 1. A crack tip element of bi-material interface under generic loadings.
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Fig. 2. Free body diagram of a bi-layer beam system.
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where EðiÞ
11 and GðiÞ

13 (i ¼ 1; 2) are the longitudinal Young’s modulus and transverse shear modulus of layer i,
respectively.

The overall equilibrium requires (Fig. 1)
N1 þ N2 ¼ N10 þ N20 ¼ NT ; Q1 þ Q2 ¼ Q10 þ Q20 ¼ QT

M1 þM2 þ N1

h1 þ h2
2

¼ M10 þM20 þ N10

h1 þ h2
2

þ QTx ¼ MT

ð3Þ
where Ni0, Qi0 and Mi0 (i ¼ 1; 2) are the axial forces, transverse shear forces and bending moments in layers

1 and 2 of the cracked portion, respectively; NT , QT and MT are the resulting forces expressed by the right

equality in the above equations.

In the sub-laminate models available in the literature, the first-order shear deformable beam/plate theory

is used, in which the effects of interface peel and shear stresses on the crack tip deformation of the beam are

ignored (Chatterjee et al., 1986). As a matter of fact, there exists severely concentrated peel and shear
stresses along the interface near the crack tip due to the edge effect (Wang and Qiao, 2004b). The large

interface stresses at the crack tip can affect the local deformation significantly (Tsai et al., 1998) and make

the local deformation at the crack tip very complicated. As a result, the deformation at the crack tip is

underestimated by this model. Higher order or multi-layer sub-laminate model can be used to improve the

accuracy; however, as a cost, the simplicity in the solutions will be lost.

In this study, with the aim to derive simple closed-form solutions, a novel conception of ‘‘interface

compliance’’ first used by Suhir (1986) is employed. As shown in Fig. 3, the real deformed cross-section of

each sub-layer is nonlinear, which deviates from the linear one assumed in the first-order shear deformable
theory (Wang and Qiao, 2004b). Similarly, Suhir (1986) assumed that the deviation of deformation at any

point of the sub-layer interface between the real and the assumed ones using beam theory is proportional to
Cn1

Cn2

Cs1

Cs2

τ

τ

τ

τ
σ

σ

σ

Fig. 3. Displacement continuity conditions along the interface of sub-layers.
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the interface stress at that point. Therefore, the displacement continuity along the bi-layer interface has

additional contributions from the interface stresses which are taken into account by using two interface

compliance coefficients, and is given by (Fig. 3):
w1ðxÞ � Cn1r ¼ w2ðxÞ þ Cn2r ð4Þ

u1ðxÞ �
h1
2
/1ðxÞ � Cs1s ¼ u2ðxÞ þ

h2
2
/2ðxÞ þ Cs2s ð5Þ
where Cni and Csi are the interface compliance coefficients of layer i under the peel and shear stresses,

respectively, which account for the contribution of interface stresses to the displacement components at the

interface of two layers. The existing sub-laminate model (Armanios et al., 1986; Chatterjee and Ramnath,

1988; Zou et al., 2001; Wang and Qiao, 2004c) is a special case of Eqs. (4) and (5) by assuming the interface
compliance coefficients are zero, implying a semi-rigid joint condition, in which only the root rotation is

permitted. As a result, the deformation at the crack tip is underestimated (on the rigid side) by the existing

sub-laminate model.

It is interesting to point out that the present approach (Eqs. (4) and (5)) in accounting for the effects of

interface shear and peel stresses on deformation is similar to a beam on elastic foundation model (Kan-

ninen, 1973, 1974; Williams, 1989), in which the additional deformations due to the interface stresses are

captured as ‘‘elastic foundation effect’’ with two foundation stiffnesses. However, the beam on elastic

foundation model can only model one sub-beam, while the present study of Eqs. (4) and (5) can model the
coupled effects of two sub-layers, and therefore, it is capable of modeling a general mixed mode fracture. In

this sense, the present model can be viewed as a generalization of the beam on elastic foundation model.

Two interface compliance coefficients can be determined through a semi-analytical and semi-numerical

calibrating process as in the elastic foundation model (Corleto and Hogan, 1995). As recently demonstrated

by Wang and Qiao (2004a), a good estimation of these two compliances is given by
Cni ¼
hi

10EðiÞ
33

; Csi ¼
hi

15GðiÞ
13

ð6Þ
where EðiÞ
33 (i ¼ 1; 2) is the through-the-thickness Young’s modulus of layer i. Substituting the first equation

in Eqs. (1) and (2) into the second equation of Eq. (5) and differentiating with respective to x yield:
d2N1

dx2
� bKsgN1 þ bKsnM1 ¼ �bKs

NT

A2

�
þ h2
2D2

MT

�
ð7Þ
where
Ks ¼
1

Cs1 þ Cs2

; Kn ¼
1

Cn1 þ Cn2

; n ¼ h1
2D1

� h2
2D2

; g ¼ 1

A1

þ 1

A2

þ ðh1 þ h2Þh2
4D2
Substituting the third equation in Eqs. (1) and (3) into Eq. (4) and differentiating two more times with
respect to x result in:
d4M1

dx4
þ h1

2

d4N1

dx4
� bKn

1

B1

�
þ 1

B2

�
d2M1

dx2
� bh1Kn

2

1

B1

�
þ 1

B2

�
d2N1

dx2
þ bKn

1

D1

�
þ 1

D2

�
M1

þ bðh1 þ h2ÞKn

D2

N1 ¼
bKnMT

D2

ð8Þ
Combining Eqs. (7) and (8), the governing equation of a bi-layer beam system is established as:
d6N1

dx6
þ a4

d4N1

dx4
þ a2

d2N1

dx2
þ a0N1 þ aMMT þ aNNT ¼ 0 ð9Þ
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where
a4 ¼ �b Ks

nh1
2

��
þ g

�
þ Kn

1

B1

�
þ 1

B2

��
;

a2 ¼ bKn Ks

1

B1

��
þ 1

B2

�
g

�
þ h1

2
n

�
þ 1

D1

�
þ 1

D2

��
;

a0 ¼ �b2KnKs

1

D1

��
þ 1

D2

�
gþ nðh1 þ h2Þ

2D2

�
;

aM ¼ b2KnKs

1

D1

��
þ 1

D2

�
h2
2
þ n

�
1

D2

;

aN ¼ b2KnKs

1

D1

�
þ 1

D2

�
1

A2

ð10Þ
Eq. (9) has the same form as the adhesive joint model (Bruno and Greco, 2001). However, in the adhesive

joint model, a virtual elastic interface is required with two interface stiffness constants which are served as

penalty factors. There is no physical meaning in the interface stiffness constants, and these values are chosen

for the convenience of calculation. However, Ks and Kn in this study have a concrete physical implication,
and they account for the deformation caused by the interface shear and peel stresses, respectively. Their

values can be determined using Eq. (6).
3. Mechanics of crack tip element

3.1. Forces and stresses

The governing differential equation (Eq. (9)) derived in Section 2 can be solved using the characteristic

equation:
x6 þ a4x4 þ a2x2 þ a0 ¼ 0 ð11Þ
The roots of the above equation for the real material and geometry parameters can be expressed for two

cases ((a) and (b)) as: (a) �R1, �R2 and �R3, or (b) �R1 and �R2 � iR3. Here R1;R2 and R3 are positive real

numbers and i ¼
ffiffiffiffiffiffiffi
�1

p
. In the following, the interface solutions (e.g., N1 ) of Eq. (9) based on Cases (a) and

(b) are provided.

Case (a): �R1, �R2 and �R3

N1 in Eq. (9) is expressed as:
N1 ¼
X3
i¼1

cie�Rix þ
X6
i¼4

cieRix þ N1C ð12Þ
where ci ði ¼ 1; 2; . . . ; 6Þ are the unknown coefficients to be determined by the boundary and continuity

conditions. Note that compared to the thickness of the beam, the length of uncracked portion of the bi-

layer system is relatively large. Therefore, the terms with positive power in the above equation can be
neglected. As a result, we have:
N1 ¼
X3
i¼1

cie�Rix þ N1C; M1 ¼
X3
i¼1

ciSie�Rix þM1C; Q1 ¼
X3
i¼1

ciTie�Rix þ Q1C ð13Þ
and
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Si ¼ �R2
i

n
1

bKs

þ g
n
; Ti ¼ Ri

R2
i

n
1

bKx

�
� g
n
� h1

2

�
; i ¼ 1; 2; 3

N1C ¼ � aM
a0

MT �
aN
a0

NT ; M1C ¼ g
n
N1C � 1

n
NT

A2

�
þ h2
2D2

MT

�
; Q1C ¼ dM1C

dx
þ h1

2

dN1C

dx
Considering the overall equilibrium conditions of Eq. (3), we obtain:
N2ðxÞ ¼ �
X3
i¼1

cie�Rix þ N2C; M2 ¼ �
X3
i¼1

Si

�
þ h1 þ h2

2

�
cie�Rix þM2C;

Q2ðxÞ ¼ �
X3
i¼1

ciTie�Rix þ Q2C ð14Þ
where
N2C ¼ NT � N1C; Q2C ¼ QT � Q1C; M2C ¼ MT �M1C � h1 þ h2
2

N1C
and N1C, M1C, and Q1C are the internal forces of layer 1 based on the conventional composite beam theory

(Suo and Hutchinson, 1990). Eq. (13) shows that the resultant forces of sub-layers are composed of two

parts: (1) the exponential terms, which decay very fast, representing the local effect; and (2) the stable-state

terms (i.e., N1C;M1C or Q1C) from the conventional composite beam solution. At a distance sufficiently far
away from the crack tip, the exponential terms are negligible, and the present solution of beam forces in Eq.

(13) is therefore reduced to the solution of conventional composite beam theory (Suo and Hutchinson,

1990).

The following conditions at the joint ðx ¼ 0Þ are given as:
N1 ¼ N10; M1 ¼ M10; Q1 ¼ Q10 ð15Þ

Then, the coefficients (ci, i ¼ 1–3) are obtained as:
c1
c2
c3

0
B@

1
CA ¼

c11 c12 c13
c21 c22 c23
c31 c32 c33

0
B@

1
CA

N

M

Q

0
B@

1
CA ¼ 1

Y

S3T2 � S2T3 T3 � T2 S2 � S3
S1T3 � S3T1 T1 � T3 S3 � S1
S2T1 � S1T2 T2 � T1 S1 � S2

0
B@

1
CA

N

M

Q

0
B@

1
CA ð16Þ
where Y ¼ S2T1 � S3T1 � S1T2 þ S3T2 þ S1T3 � S2T3 and
N ¼ N10 � N1Cjx¼0; M ¼ M10 �M1Cjx¼0; Q ¼ Q10 � Q1Cjx¼0 ð17Þ
By using equilibrium equation (Eq. (1)), the interface stresses (i.e., peel and shear) are given by:
r ¼ 1

Y
N
X3
i¼1

RiTici1e�Rix

 
þ M

X3
i¼1

RiTici2e�Rix þ Q
X3
i¼1

RiTici3e�Rix

!
þ rC

s ¼ 1

Y
N
X3
i¼1

Rici1e�Rix

 
þ M

X3
i¼1

Rici2e�Rix þ Q
X3
i¼1

Rici3e�Rix

!
þ sC

ð18Þ
Similar to the resulting forces, the interface stresses are expressed in two parts: (1) the exponential terms
representing the local stress concentration near the crack tip, and (2) the rest of terms based on the con-

ventional composite beam solution (i.e., rC and sC).
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Case (b): �R1 and �R2 � iR3

Similarly, we can obtain the resultant force solutions for this case as:
N1 ¼ c1e�R1x þ e�R2x c2 cos R3xð Þð þ c3 sin R3xð ÞÞ þ N1C

M1 ¼ c1S1e�R1x þ e�R2x c2 S2 cosðR3xÞðð þ S3 sinðR3xÞÞ þ c3 S3 cos R3xð Þð þ S2 sin R3xð ÞÞÞ þM1C

Q1 ¼ c1T1e�R1x þ e�R2x c2 T2 cos R3xð Þðð þ T3 sin R3xð ÞÞ þ c3 T3 cos R3xð Þð þ T2 sin R3xð ÞÞÞ þ Q1C

ð19Þ
where
S1 ¼ � R2
1

nbKs

þ g
n
; S2 ¼ �R2

2 � R2
3

nbKs

þ g
n

S3 ¼
2R2R3

nbKs

T1 ¼ �R1S1 �
h1
2
R1; T2 ¼ �R2S2 þ S3R3 �

h1
2
R2; T3 ¼ �R2S3 þ S2R3 �

h1
2
R3 ð20Þ
The coefficients of integration ci are determined by the boundary conditions (Eq. (15)) as:
c1
c2
c3

0
@

1
A ¼

c11 c12 c13
c21 c22 c23
c31 c32 c33

0
@

1
A N

M
Q

0
@

1
A ¼ 1

Y

S3T2 � S2T3 T3 �S3
S1T3 � S3T1 �T3 S3
S2T1 � S1T2 T2 � T1 S1 � S2

0
@

1
A N

M
Q

0
@

1
A ð21Þ
where Y ¼ �S3T1 þ S3T2 þ S1T3 � S2T3.

3.2. Deformation at crack tip

The deformation at the joint can be obtained from the constitutive law in Eq. (2) and the above solutions

of resultant forces of each layer. As an illustration of this process, the rotation of layer 1 at the joint is
calculated for Case (a) as:
/1ðLÞ � /1ð0Þ ¼
Z L

0

M1

D1

dx ¼ 1

D1

c1S1
R1

�
þ c2S2

R2

þ c3S3
R3

�
þ
Z L

0

M1C

D1

dx ð22Þ
Note that:
Z L

0

M1C

D1

dx ¼ /1CðLÞ � /1Cð0Þ ð23Þ
where /1C is the rotation angle based on the conventional composite beam theory. When L is relatively

large, we have:
/1ðLÞ ¼ /1CðLÞ ð24Þ

Therefore:
/1Cð0Þ � /1ð0Þ ¼ D/1ð0Þ ¼ S21N þ S22M þ S23Q ð25Þ

where
S2i ¼
1

D1

c1iS1
R1

�
þ c2iS2

R2

þ c3iS3
R3

�
; i ¼ 1; 2; 3 ð26Þ
Following the same procedure as above, we express the deformation of the elastic joint as:
DUð0Þ ¼ UCð0Þ �Uð0Þ ¼ SF ð27Þ

where Uð0Þ ¼ fu1ð0Þ;/1ð0Þ;w1ð0Þ; u2ð0Þ;/2ð0Þ;w2ð0ÞgT represents the displacement components at the
crack tip of this study; UCð0Þ ¼ fu1Cð0Þ;/1Cð0Þ;w1Cð0Þ; u2Cð0Þ;/2Cð0Þ;w2Cð0ÞgT represents the displace-

ment components at the crack tip based on the conventional composite beam model;
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7432 P. Qiao, J. Wang / International Journal of Solids and Structures 41 (2004) 7423–7444
DUð0Þ ¼ fDu1ð0Þ;D/1ð0Þ;Dw1ð0Þ;Du2ð0Þ;D/2ð0Þ;Dw2ð0ÞgT are the difference between the conventional

composite beam model and the present study; F ¼ fN ;M ;QgT is the loading matrix defined in Eq. (17).

S ¼ fSijg6�3 is a matrix representing the local deformation compliance at the crack tip and given in
Appendix A.

Eq. (27) provides a new continuity condition at the crack tip that is more realistic than that in the

conventional composite beam (rigid) model used commonly in the literature (Suo and Hutchinson, 1990)

(Fig. 4). As shown in Fig. 4(a), the deformations of each sub-beam at the crack tip are constrained in the

conventional rigid joint model such that the deformed cross-section at the crack tip still remains a plane,

i.e., the whole joint deforms like a rigid body. On the other hand, the present model (Fig. 4(b)) releases this

constraint on the deformations at the crack tip and allows each sub-beam to have different displacement

components ui, wi and /i at the crack tip. As a result, the joint behaves like a flexible body, and therefore
Eq. (27) is referred to as a flexible joint model in this study.
3.3. Special case: a symmetric bi-layer beam

As an illustration, a simple case of symmetric bi-layer beam is studied in this section. Note that when the
two sub-beams have the same material and geometry, i.e., the bi-layer beam is symmetric ðn ¼ 0Þ, and the

governing equation (Eq. (7)) is decoupled, thus:
d2N1

dx2
� bKsgN1 ¼ �bKs

NT

A2

�
þ h2
2D2

MT

�
ð28Þ
The axial force can be obtained as:
N1 ¼ c1e�k1x þ N1C ð29Þ
where
k1 ¼
ffiffiffiffiffiffiffiffiffiffi
bKsg

p
ð30Þ
Substituting this solution to Eq. (8), we have:
M1 ¼ c2e�k2x þ c3e�k3x þ Sc1e�k1x þM1C ð31Þ
Q1 ¼ �c2k2e�k2x � c3k3e�k3x � S
�

þ h1
2

�
c1k1e�k1x þ Q1C ð32Þ
where
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The coefficients of integration ci are determined by the boundary conditions (Eq. (15)) as:
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The deformation at the crack tip can be expressed by Eq. (27). However, the compliance matrix is different,

and it is given by the Case (c) in Appendix A.

3.4. Numerical verification

To verify the above solutions, the deformations at the joint of three simple split beam configurations are

examined by the present method and finite element analysis (FEA): (a) a symmetric double cantilever beam

(DCB) under unit mode I (open) loading (Fig. 5(a)) with E1 ¼ E2 ¼ 1, m1 ¼ m2 ¼ 0:3 and h1 ¼ h2 ¼ 1; (b) an

asymmetric double cantilever beam (ADCB) specimen under mode I loading (Fig. 5(a)) with E2 ¼ 5E1 ¼ 5
and other parameters are the same as Case (a); and (c) an end loaded split (ELS) specimen under mode II

loading (Fig. 5(b)) with the same parameters as Case (a). In order to avoid the boundary effect of applied

loadings, the geometries in Fig. 5 are chosen as a=h1 ¼ 16, a=L ¼ 1. The specimens are modeled by a

commercial finite element package ANSYS (1998) as a 2-D problem with 8-node structural plane element

(PLANE82). As demonstrated by Table 1 and deformed cross-section (the axial displacement) at the crack

tip sketched in Fig. 6, excellent agreements between the present method and FEA have been achieved.

Significant rotations at the joint are captured by the present model for the DCB and ADCB specimens;

while in the conventional composite beam model, zero joint (crack tip) rotation is assumed. The peel and
shear stresses along the interface of two layers are also obtained and presented in Fig. 7. Highly close

agreements between the present study and FEA are observed, implying that the present model has an

excellent ability to evaluate the interlaminar stresses.

The rotation at the joint plays a significant role in the crack tip element analysis and is of great concern

to many researchers (Corleto and Hogan, 1995; Li et al., 2004; Wang and Qiao, 2004b). A highly accurate

estimation of rotation at the joint (crack tip) is very desirable, although very few results are available in the

literature. Sun and Pandey (1994) obtained a solution of the root rotation at the joint for an isotropic
Fig. 5. Specimens under examination. (a) DCB or ADCB specimen; (b) ELS specimen.
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Table 1

Displacements and rotations at the joint (present solution and FEA)

Specimen E1h1Du1=P E1h1Du2=P E1h1Dw1=P E1h1Dw2=P E1h21D/1=P E1h21D/2=P

DCB Present 0.0 0.0 18.3 )18.3 128.8 )128.8
FEA 0.0 0.0 20.7 )20.7 131.4 )131.4

ADCB Present 9.74 )1.95 0.54 )20.3 93.0 )42.0
FEA 7.88 )1.78 1.64 )18.98 97.0 )41.3

ELS Present 2.5 )2.5 0.0 0.0 14.9 14.9

FEA 4.16 )4.16 0.0 0.0 13.3 13.3
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homogeneous split beam under opposite bending moments through an approximate 2-D elastic analysis.
The rotation angles obtained by their solution and the present study are shown in Fig. 8 for a range of layer

thickness ratios from 0.2 to 5. It can be seen that the present solution is very close to the rotation by the 2-D

elastic analysis (Sun and Pandey, 1994). For a general bi-layer situation when the layers are made of

different materials and subjected to general loading, there is no analytical solution available in the litera-

ture. Recently, Li et al. (2004) obtained a numerical solution of rotation through finite element analysis for

isotropic bi-layer joint. In their solution, the rotation at the crack tip is expressed in the same fashion as in

Eq. (25). Unlike the present closed-form solution, three nondimensional coefficients in Li et al. (2004)

(cP ; cM and c0V in their notation as given by the equation in Fig. 9) were obtained by conducting parametric
finite element analysis. In Fig. 9, a is Dundurs’ (1969) parameter and given by ðE1=E2 � 1Þ=ðE1=E2 þ 1Þ.
Fig. 9 compares the solution by the present study with the coefficients which are determined and noted in

the fashion given in Li et al. (2004). An excellent agreement between the present solution and the one by Li

et al. (2004) is achieved for the coefficients of the bending moments. Some differences exist for other two

coefficients, but the trend is the same. Noting that the bending moment is the most significant loading in

rotation, the present solution generally produces very close results to these by FEA.
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4. Interface fracture analysis

Interface cracking is one of common failure modes in multi-layered structures. Typical exam-

ples include delamination of composite laminates, debonding of adhesive joints, and decohesion of

thin films from substrates. Fracture mechanics principles have been widely employed to assess this

type of failure mode in which it is necessary to extract the mode mix of energy release rate (ERR) G
and stress intensity factor (SIF) K at the crack tip in order to successfully predict the growth of crack.

Classical beam theory was used in deriving the linear elastic fracture mechanics (LEFM) parameters of
interface crack of bi-layer structure in the literature (Suo and Hutchinson, 1990; Schapery and Davidson,
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1990). However, the effect of transverse shear is not considered in the classical model. A transverse shear

force exists at the crack tip in most bi-layer interface fracture problems, such as in a double cantilever beam

(DCB) specimen; thus, it has a notable contribution to the ERR and SIF (Gillis and Gilman, 1964;

Mostovoy et al., 1967; Kanninen, 1973, 1974). As a matter of fact, the shear deformation effect on the ERR

for anisotropic materials with relative low transverse shear modulus such as polymer matrix composite

laminates is even more significant as shown in Bruno and Greco (2001) where the portion contributed by
the shear deformation was found to be more than half of the total ERR for an orthotropic double can-

tilever beam specimen. Therefore, it is necessary to account for the contribution from the shear deformation

to the ERR, especially when the materials with relative low transverse shear modulus and moderate

thickness are concerned. Intensive studies have been carried out to incorporate the transverse shear

deformation into the interface fracture expressions (Suo et al., 1991; Bao et al., 1992; Sun and Pandey,

1994; Williams, 1987; Point and Sacco, 1996; Bruno and Greco, 2001; Nilsson et al., 2001). Recently, Wang

and Qiao (2004b) presented explicit closed-form solutions of the ERR and SIF which account for the effect

of transverse shear force through a novel split beam model based on the first-order shear deformable beam
theory. This solution by the shear deformable bi-layer beam theory (Wang and Qiao, 2004b) provides

improved and simplified closed-form expressions for the ERR and SIF under the general loading condi-

tions. Compared with a recent numerical analysis carried out by Li et al. (2004), the solution by Wang and

Qiao (2004b) still underestimates the ERR, which can be attributed to that the split model used in the

formulation is still a semi-rigid joint model. Based on the aforementioned formulation in Section 3, a more

flexible split beam or joint model is introduced by the proposed interface deformable bi-layer beam theory,

and a more accurate solution of joint deformation obtained is used in this section to derive the ERR, SIF,

and mode mixity of interface fracture in a bi-layer beam system.
4.1. Interface fracture parameters

The superposition approach is used in this study to obtain the solution, in which the fracture problem

in Fig. 10(a) is divided into two sub-problems of Fig. 10(b)––an uncracked bi-layer beam and Fig.

10(c)––a cracked bi-layer beam only under self-equilibrated forces M , N and Q. Since the uncracked bi-

layer beam in Fig. 10(b) produces no ERR, the ERR of Fig. 10(a) equals to that corresponding to Fig.

10(c).



Fig. 10. Equivalent problem of bi-material interface fracture.
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The J -integral is used to calculate the energy release rate at the crack tip. A closed path surrounding the

crack tip shown in Fig. 10(c) is chosen as the integrating path. The J -integral can be calculated by (Fraisse

and Schmit, 1993):
J ¼ 1

2

N 2
1

C1

�
þ N 2

2

C2

þ Q2
1

B1

þ Q2
2

B2

þM2
1

D1

þM2
2

D2

� 2Q1/1 � 2Q2/2

�����
x¼0

x¼L

ð36Þ
Substituting the boundary conditions at x ¼ 0 and L of the problem in Fig. 10(c), Eq. (36) becomes:
J ¼ 1

2
CNN 2

�
þ CMM2 þ CMNMN þ 1

B1

�
þ 1

B2

�
Q2 � 2Q /1ð0Þð � /2ð0ÞÞ

�
ð37Þ
where
CN ¼ 1

C1

þ 1

C2

þ ðh1 þ h2Þ2

4D2

; CM ¼ 1

D1

þ 1

D2

; CMN ¼ h1 þ h2
D2

ð38Þ
in which the loading parameters M , N , Q are defined by Eq. (17).

It can be seen that the ERR depends not only on the three loading parameters but also the relative

rotation at the joint (crack tip). Eq. (37) clarifies the major argument made by Li et al. (2004) on the effects

of transverse shear on interface fracture in the layered materials. In their study, Li et al. (2004) pointed out
that the crack tip deformation only affects the shear components of the ERR. In this study, two terms of the

transverse shear Q are present in Eq. (37) which represent the transverse shear components of the total

ERR of the interface fracture: (a) the far-field part ð1=B1 þ 1=B2ÞQ2=2 which is the contribution of the shear

deformation in the cracked region, and (b) �Qð/1ð0Þ � /2ð0ÞÞ which is the contribution from the shear

deformation in the uncracked region of a bi-layer beam. Only the latter part (Part (b)) of the transverse

shear component is dependent on the local deformation at the crack tip, and more exactly, only dependent

on the relative rotation of two sub-layers at the crack tip. It should be noted that the local deformation is

not physically a contributor to the ERR. As a matter of fact, the relative rotation in Eq. (37) is a reflection
of the complex local stress field, and it disappears once the conventional composite beam model is used.

Therefore, the appearance of local deformation in the ERR is the result of the effect of interface stresses
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which is ignored in the conventional composite beam model, and thus more transverse shear contribution

to the ERR is captured by Eq. (37).

Substituting the solution of rotation at the crack tip (Eq. (25)) obtained in the previous section into Eq.

(37), we have:
J ¼ 1

2
CNN 2
�

þ CQQ2 þ CMM2 þ CMNMN þ CNQNQþ CMQMQ
�

ð39Þ
where
CQ ¼ 1

B1

þ 1

B2

þ S23 � S53; CNQ ¼ S21 � S51; CMQ ¼ S22 � S52 ð40Þ
Compared with the previous study of Wang and Qiao (2004b), the coefficients given in Eq. (40) are larger;

thus, the previous study tends to underestimate the ERR.

The energy release rate can be related to the stress intensity factor (Suo, 1990) as:
G ¼ H11

4 cosh2 peð Þ
jKj2 ð41Þ
Based on the dimensional consideration and linearity, the complex stress intensity factor K can be written in

the form:
K ¼ K1 þ iK2 ¼
ffiffiffiffiffiffi
CN

p
N

�
� ieic1

ffiffiffiffiffiffiffi
CM

p
M � ieic2

ffiffiffiffiffiffi
CQ

p
Q
� pffiffiffi

2
p h�ie

1 eix ð42Þ
where x is defined in the same way as in Suo and Hutchinson (1990) and
sinðc1Þ ¼
CMN

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CMCN

p ; sinðc2Þ ¼
CNQ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
CNCQ

p ð43Þ
It is convenient to use the combination Khie1 as suggested by Rice (1988) and define:
Khie1 ¼ KI þ iKII ¼ jKjeiw ð44Þ

Then the stress intensity factors are given by:
KI ¼
pffiffiffi
2

p
ffiffiffiffiffiffi
CN

p
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þ
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The phase angle w defined is given by:
w ¼ tan�1
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and b is the generalization of one of Dundurs’ (1969) parameters for isotropic materials and e is the bi-

material constant. The subscripts ‘‘1’’ and ‘‘2’’ used outside the square brackets in the above expressions
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refer to the materials of top and bottom layers, respectively. The nondimensional parameters k and n are

given by:
k ¼ s11
s33

; n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1þ qÞ

r
; q ¼ 1

2

2s13 þ s33ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p
� �

ð49Þ
where sij are the material compliance and defined in the conventional fashion.

It can be found that Eqs. (45)–(47) can be reduced to the expressions given in Suo and Hutchinson (1990)

if the transverse shear force Q is neglected. In other words, the present results of Eqs. (45)–(47) can be

regarded as a straight extension of Suo and Hutchinson’s results (1990) which ignore the transverse shear

deformation to shear deformable materials. This indicates that the present solution is an improvement of

the classical results, and it accounts for the transverse shear deformation in the closed-form solution.
4.2. Comparison and verification

Li et al. (2004) carried out a systematic numerical study of interface fracture in layered materials using

finite element analysis. Essentially the same expression as Eq. (39) was obtained in their study but the

coefficient CQ (fv in their notation) was obtained numerically. The phase angle was calculated through a

tedious vector addition process with the aid of an auxiliary angle obtained numerically. Due to the com-

plexity of the interface fracture, especially the effect of b, their solution is only valid to the very simple bi-

material interface fracture where the most troublesome, however, inherited feature of interface fracture,

oscillation is not present (i.e., b ¼ 0) and both materials at the bi-layer interface are treated as isotropic. As

a comparison, the current analytical solution is applicable in more general situations where the materials
Fig. 11. Comparison of interface fracture parameters for an ADCB specimen. (a) Energy release rate; (b) phase angle.



Table 2

CQ determined by the present solution and finite element analysis (Li et al., 2004)

a H

0.2 0.4 0.6 0.8 1.0

Present FEA Present FEA Present FEA Present FEA Present FEA

)0.8 1.807 1.635 1.800 1.645 1.813 1.663 1.834 1.684 1.861 1.711

)0.6 1.852 1.687 1.840 1.708 1.866 1.739 1.906 1.781 1.952 1.829

)0.4 1.897 1.753 1.894 1.784 1.926 1.836 1.985 1.898 2.049 1.968

)0.2 1.949 1.833 1.939 1.881 1.997 1.954 2.078 2.037 2.163 2.127

0.0 2.009 1.940 2.006 2.009 2.090 2.106 2.191 2.217 2.304 2.335

0.2 2.199 2.089 2.226 2.186 2.350 2.314 2.497 2.460 2.650 2.605

0.4 2.452 2.300 2.531 2.439 2.717 2.619 2.924 2.809 3.133 3.003

0.6 2.839 2.654 3.017 2.865 3.305 3.125 3.608 3.394 3.905 3.665

0.8 3.636 3.412 4.061 3.800 4.583 4.250 5.069 4.704 5.583 5.127
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are orthotropic and oscillation is present. The loading parameters for an ADCB specimen shown in Fig.
11(a) are given by Eq. (17) as:
N ¼ 0; M ¼ �Pa; Q ¼ �P ð50Þ

The interface fracture parameters for this case can then be obtained by Eqs. (39) and (47) as:
G ¼ P 2

2
CMa2
�

þ CMQaþ CQ

�
ð51Þ

w ¼ � tan�1

ffiffiffiffiffiffiffi
CM

p
a cos xþ c1ð Þ þ

ffiffiffiffiffiffi
CQ

p
cos xþ c2ð Þffiffiffiffiffiffiffi

CM

p
a sin xþ c1ð Þ þ

ffiffiffiffiffiffi
CQ

p
sin xþ c2ð Þ

 !
ð52Þ
Table 2 lists the CQ values obtained by the present analytical solution and finite element results of Li et

al. (2004). Generally, these two methods produce very close results and the difference between them is less

that 10%. It seems that the present method overestimates CQ a bit compared with those of Li et al. (2004).

This may be attributed to the value of Poisson’s ratio chosen in the analytical solution. In this study, a value

of Poisson’s ratio v ¼ 0:3 is fixed for one material and the other ratio is chosen to make b ¼ 0. The resulting

Poisson’s ratio is unrealistically large and used to calculate the shear modulus by using E=2=ð1þ mÞ.
Consequently, the transverse shear modulus is relatively small, and the material behaves like orthotropic.
As a mater of fact, the current analytical solution can predict almost the same results as the finite element

analysis if a realistic Poisson’s ratio is chosen in the calculation as shown in Fig. 11. A double cantilever

beam (DCB) specimen is studied in Fig. 11 by the present analytical solution which is compared with the

finite element results of Li et al. (2004). A value of 0.3 for Poisson’s ratio is chosen for both the materials.

Both the ERR and phase angle predicted by the present method are in excellent agreements with the FEA

results with a maximum error of 1%. Note that the high accuracy of the present solution is valid for the

entire material mismatch ranging from a ¼ �0:8 to 0.8.
5. Conclusions

In this study, a novel interface deformable bi-layer beam theory is proposed in order to accurately model

the crack tip deformation. A bi-layer beam with interface crack is modeled as two separate shear
deformable sub-layers bonded perfectly along the interface, and an interface deformable model which
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employs two interface compliances at the crack tip is used to account for the effects of the interface stresses

on the deformation of the sub-beams (i.e., elastic foundation effect). Closed-form solutions of deformation

at the crack tip are obtained. Excellent agreement with full 2-D elastic analysis is reached which validates

the accuracy of the present model. Improved solution and analysis of cracked beam are resulted by using
the present model. Compared to the rigid joint model based on the conventional composite beam theory

(Suo and Hutchinson, 1990; Schapery and Davidson, 1990) and the semi-rigid joint model based on the

shear deformable bi-layer beam theory (Wang and Qiao, 2004b), the present flexible join model using the

interface deformable bi-layer beam theory shows its accuracy in modeling the actual deformation at

the crack tip.

An expression of J -integral of interface fracture in a bi-layer beam is further derived which shows

that the shear component of the energy release rate (ERR) depends on the relative rotation of two

layers at the crack tip. By substituting the solution of crack tip deformation, closed-form analytical
solutions of the ERR and stress intensity factors (SIF) are obtained, for which the transverse shear

effect is fully accounted. High accuracy of the present solutions is demonstrated by the remarkable

agreements achieved in comparisons with the full elastic study using the finite element analysis for a

large range of material mismatch, thickness ratio and material orthotropy. The current solution pro-

vides an effective way to retrieve explicit and accurate interface parameters. Further, the interface

deformable bi-layer beam theory presented in this study provides analytical solutions for a flexible joint

model which can be used effectively in the bi-layer beam analyses (e.g., delamination buckling and

vibration, etc.).
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Appendix A. Compliance matrix of elastic joint in Eq. (27)

Case (a): The characteristic Eq. (10) with roots of �R1, �R2 and �R3
S1i ¼
1

A1

c1i
R1

�
þ c2i

R2

þ c3i
R3

�
; i ¼ 1; 2; 3

S2i ¼
1

D1

c1iS1
R1

�
þ c2iS2

R2

þ c3iS3
R3

�
; i ¼ 1; 2; 3

S3i ¼
S1

D1R2
1

��
þ T1
B1R1

�
c1i þ

S2
D1R2

2

�
þ T2
B1R2

�
c2i þ

S3
D1R2

3

�
þ T3
B1R3

�
c3i

�
; i ¼ 1; 2; 3

S4i ¼ � 1

A2

c1i
R1

�
þ c2i

R2

þ c3i
R3

�
; i ¼ 1; 2; 3

S5i ¼ � 1

D2

c1iS1
R1

�
þ c2iS2

R2

þ c3iS3
R3

�
� h1 þ h2

2D2

c1i
R1

�
þ c2i

R2

þ c3i
R3

�
; i ¼ 1; 2; 3

S6i ¼ �
h1þh2

2
þ S1

D2R2
1

  
þ T1
B2R1

!
c1i þ

h1þh2
2

þ S2
D2R2

2

 
þ T2
B2R2

!
c2i þ

h1þh2
2

þ S3
D2R2

3

 
þ T3
B2R3

!
c3i

!
; i ¼ 1; 2; 3
ðA:1Þ
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Case (b): The characteristic Eq. (10) with roots of �R1 and �R2 � iR3
S1i ¼
1

A1

c1i
R1

�
þ c2iR2

R2
2 þ R2

3

þ c3iR3

R2
2 þ R2

3

�
; i ¼ 1; 2; 3

S2i ¼
1

D1

c1iS1
R1

�
þ c2i R2S2 þ R3S3ð Þ

R3
2 þ R2

3

þ c3i R2S3 þ R3S2ð Þ
R3
2 þ R2

3

�
;

i ¼ 1; 2; 3

S3i ¼
S1

D1R2
1

�
þ T1
B1R1

�
c1i þ

S2 R2
2 � R2

3

� �
þ 2R2R3S3

D1 R2
2 þ R2

3ð Þ2

 
þ T2R2 þ T3R3

B1 R2
2 þ R2

3ð Þ

!
c2i
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S3 R2
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þ 2R2R3S2

D1 R2
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3ð Þ2
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B1 R2
2 þ R2

3ð Þ
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S4i ¼ � 1

A2

c1i
R1

�
þ c2iR2

R2
2 þ R2

3

þ c3iR3

R2
2 þ R2

3

�
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2
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3

þ
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2
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� �

R3 þ R2S3
� �

R3
2 þ R2

3

!
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2
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1
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Case (c): Same material and geometry for both sub-layers
S1i ¼
1

A1

c1i
k1

� �
; i ¼ 1; 2; 3
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