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Abstract

Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material
interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of
crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the
interface peel and shear stresses are ignored and thus a “rigid” joint is used, the present study introduces two interface
compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic
foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces,
deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the
crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can
improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions
and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and
stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF
are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full
continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable,
while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam
analyses (e.g., delamination buckling and vibration, etc.).
© 2004 Elsevier Ltd. All rights reserved.
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1. Background

A bi-material or bi-layer system is a common configuration in structural applications, and it is usually
manufactured by either monolithically forming the two parts together or adhesively bonding the two
substrate layers. Interface fracture or interlaminar delamination is one of most common failure modes in
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this type of layered structures. An elastic joint (crack tip) is formed at the delamination tip of a bi-layer
structure where the delaminated portions are connected together with the uncracked portion. Require-
ment of effective analysis of the local deformation at the crack tip is encountered frequently, such as the
delamination buckling of laminated composites (Chai et al., 1981), data reduction technique of fracture
tests (Wang and Qiao, 2004a), crack identification (Farris and Doyle, 1993), and vibration analysis of
delaminated structures (Brandinelli and Massabo, 2003). A “rigid” joint model is used widely in the
literature (Williams, 1988; Suo and Hutchinson, 1990; Schapery and Davidson, 1990), which assumes
that the cross-sections at the crack tip remain in one plane and perpendicular to the mid-plane of the
virgin beam. This conventional model neglects the elastic deformation of the joint, such as the differ-
ential axial extension of the two beams and the root rotation at the crack tip (Sun and Pandey, 1994)
and thus forms a rigid joint. Extra errors are introduced, and unfavorable results are obtained by such a
conventional split beam model, such as the un-conservative loading of delamination buckling of com-
posites (Shu and Mai, 1993), underevaluated energy release rate of fracture (Sun and Pandey, 1994), and
rough dynamic analysis at the crack tip (Farris and Doyle, 1993). The reason of this unfavorable feature
of the available elastic “rigid” joint model is explained by the nature of the assumptions used in the
beam model, which are unable to describe the severe local deformation at the crack tip of the split beam.
As a matter of fact, the local deformation, which is known as the edge effect, is accounted conven-
tionally by Saint-Venant’s principle. In the cases where the local deformation is of no interest or of little
importance, the conventional rigid joint model is applicable; however, in the cases where the local
deformation is significant, a new and improved model is required to account for the elastic deformation
at the joint (crack tip). Therefore, Farris and Doyle (1993) pointed out that “a simple scheme to esti-
mate the effective elastic properties of the joint is required”, and ‘‘this is an area that warrants further
study”.

Intensive studies have been carried out to accurately model the elastic deformation of a joint (crack
tip). For certain simple split beam problem where the beam is symmetric such as a Double Cantilever
Beam (DCB) specimen commonly used in mode-I fracture testing, a beam on elastic foundation model
proposed by Kanninen (1973, 1974) is usually used in the literature to account for the local defor-
mation at the crack tip (Williams, 1989; Wang and Williams, 1992; Corleto and Hogan, 1995; Ozil and
Carlsson, 1999; Qiao et al., 2003a,b). Excellent agreements with numerical finite element analysis and
experimental testing results could be reached by this method. However, for a general bi-layer cracked
beam, a sub-layer (or sub-laminate in composite laminates) model (Armanios et al., 1986; Wang and
Qiao, 2004b,c) is more suitable. In this type of model, each layer of the virgin beam at the joint is
modeled as a single sub-beam, instead of only modeling the whole uncracked portion as a composite
beam in the conventional way (Suo and Hutchinson, 1990; Schapery and Davidson, 1990). Thus, each
layer has individual rotation and the cross-section at the joint does not remain a plane as assumed in
the conventional composite beam model (Suo and Hutchinson, 1990; Schapery and Davidson, 1990). In
this regard, the joint (crack tip) is deformable and can be analyzed by beam analysis (Wang and Qiao,
2004b). However, the assumption that the interface stresses have no effect on the beam deformation is
used in this model (Wang and Qiao, 2004b) leading to a ‘“‘semi-rigid” joint scenario at the crack tip
between two sub-layers. Such a semi-rigid joint model requires two concentrated forces which are
nonexistent physically at the crack tip to satisfy the equilibrium condition. Consequently, the local
stress distribution is deviating from the actual condition, and the resulting solution of deformation is
approximate in nature based on the “semi-rigid” joint model (Wang and Qiao, 2004b). Better accuracy
can be achieved by modeling each sub-beam (or sub-laminate) with a higher order beam theory or with
more sub-layers. The later approach is referred as multi-sub-layer model since more than two sub-layers
are considered, such as proposed by Chatterjee et al. (1986) and Chatterjee and Ramnath (1988)
in their study on the mixed mode delamination in composite materials. Improved results could be
obtained by this method on interlaminar stress and energy release rate of delamination in composites
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if more sub-layers were used in the model. This method was later followed by Zou et al. (2001) through
employing the finite element technique, instead of obtaining the governing equation of each sub-layer,
and similar improvement in accuracy was demonstrated in their calculations. A very similar approach
to the sub-layer model used frequently in the literature is the adhesive joint model (Bruno and Greco,
2001). The only difference between the adhesive joint model and the bi-layer beam model is that the
former model employs a linear elastic interface to connect two sub-layers. If the stiffness of interface
layer is infinitely large corresponding to a rigid or perfect bonding along the interface, the adhesive
joint model coincides with the bi-layer or two-sub-layer model discussed above, and therefore, has the
same accuracy.

Some other methods incorporating the crack tip deformation are also available in the literature, which
are not so commonly used. Sun and Pandey (1994) obtained an approximate two-dimensional elastic
solution for the root rotation at the joint (crack tip) of an isotropic and materially homogeneous split beam.
Sundararaman and Davidson (1998) used a torsional spring to describe the deformation at the joint in
order to obtain reasonably accurate results in their analysis of an unsymmetric end-notched flexure spec-
imen, in which the stiffness of the torsional spring was obtained numerically. Shu and Mai (1993) used both
the “rigid” and “‘soft” joint models to evaluate the upper and lower bounds of buckling and vibration of a
bi-material split beam.

In all the aforementioned investigations, only the model recently developed by the authors (Wang and
Qiao, 2004b) provides a simple closed-form solution for general conditions of a bi-layer beam. However,
the accuracy of the solution is still low compared to the multi-sub-layer model which has no simple closed-
form solution available. To overcome this dilemma, in this study, a novel interface deformable bi-layer
theory is proposed to study the complex deformation in the vicinity of the crack tip. Highly accurate closed-
form solution of the local deformation near the crack tip is obtained by this model without employing a
higher order beam theory or dividing each layer into more sub-layers.

An important application of the crack tip deformation model in interface fracture analysis is discussed in
detail in this study also with aim to account for the transverse shear deformation effects on fracture of
layered structures. As illustrated most recently by Li et al. (2004), the role of transverse shear force on the
interface fracture expressions is fundamentally affected by the local deformation at the crack tip. Although
a full continuum elastic analysis (such as finite element analysis) is required to obtain a rigorous solution for
the shear component of the ERR (Li et al., 2004), it is feasible that the closed-form solutions of interface
fracture considering both the transverse shear and crack tip deformation effects can be obtained analytically
by using a proper beam model (Wang and Qiao, 2004b). Armed with the solution of the local deformation
at the crack tip obtained in this study, improved closed-form solutions of energy release rate (ERR) and
stress intensity factor (SIF) are derived. Compared with the full continuum elasticity analysis, such as finite
element analysis of Li et al. (2004), the present solutions are much explicit, more applicable, and compa-
rable in accuracy.

To make the analysis more portable, a segment near the crack tip (i.e., crack tip element) of a split
(cracked) bi-layer beam is chosen in this study. This segment is essentially a crack tip element as described
by Schapery and Davidson (1990) with a much longer length compared to its thickness so that the far-field
boundary condition effect is negligible. This paper is organized as follows: the analytical framework of a
novel bi-layer beam theory considering the interface compliances is first established, and the resultant forces
and deformations at the crack tip are obtained. To validate the proposed work, the present interface
deformable bi-layer beam solution is compared with other available analytical results and numerical finite
element analysis. Then the energy release rate of a crack along the interface is obtained based on the
deformation solution at the crack tip. The mode decomposition is carried out next, and the explicit
expressions of the ERR and SIF are given. Comparisons of fracture parameters (e.g., the ERR and mode
mixity) with available numerical analyses are carried out to show the high accuracy of the present solution
to interface fracture.
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2. Novel interface deformable bi-layer beam theory

Consider a cracked bi-layer beam under general loading of Fig. 1, where a crack lies along the straight
interface of the top beam “1” and bottom beam “2”” with thickness of 4, and 4,, respectively. Two beams
are made of homogenous, orthotropic materials, with the orthotropy axes along the coordinate system. The
length of the uncracked region L is relatively large compared to the thickness of the whole beam 4y + &,
resulting in the negligible boundary condition effect of the uncracked region on the crack tip is negligible.
The length of the delaminated region is not important since it only changes the resultant forces and bending
moment at the crack tip. Therefore, in this study it is chosen as infinitesimal for the convenience of analysis.
This configuration essentially represents a crack tip element, a small element of a split beam where the
cracked and uncracked portions are joined, on which generic loads are applied, as determined by a global
beam or beam analysis. It is assumed that a beam theory can be used to model the behavior of the top and
bottom layers. A plane stress (beam model) formulation is used in this study, while the plane strain solution
can be directly obtained by substituting the proper stiffness and Poisson’s ratio.

Considering a typical infinitesimal isolated body of the bi-layer beam system (Fig. 2), the following
equilibrium equations are established:

%@ = bt(x), d]\(l;)gx) = —bt(x)
W) _ po), 92 o) (1)
dM] ()C) sz (X)

h] h2
o = O (x) — ?br(x), o Oa(x) — 5197()‘)

where N (x) and M,(x), O;(x) and Q,(x), M;(x) and M,(x) are the internal axial forces, transverse shear
forces, and bending moments in layers 1 and 2, respectively; b is the width of the beam; 4, and 4, are the
thickness of layers 1 and 2, respectively; o(x) and 7(x) are the interface normal (peel) and shear stresses,
respectively.

By making use of the constitutive equations of the individual layers, we can relate the stress resultants
and displacements of layers as:
dui d¢ dwi
—, M;=D,——, i = Bi| ¢+ —— 2
. o o=(a+ ) 2)
where 4;, B;, and D; (i = 1,2) are the axial, shear and bending stiffness coefficients of layer i, respectively,
expressed as
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Fig. 1. A crack tip element of bi-material interface under generic loadings.
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Fig. 2. Free body diagram of a bi-layer beam system.

where E i’l) and Gi’g (i = 1,2) are the longitudinal Young’s modulus and transverse shear modulus of layer i,
respectively.
The overall equilibrium requires (Fig. 1)

Ni+Ny=Nig+Nyy=Nr, Q1+ 0r= 010+ Qn=0r

hy 4 hy hy + hy (3)

M, + M, + N = My + My + Nyg + Orx = My

where Ny, Oy and M,y (i = 1,2) are the axial forces, transverse shear forces and bending moments in layers
1 and 2 of the cracked portion, respectively; Ny, Or and My are the resulting forces expressed by the right
equality in the above equations.

In the sub-laminate models available in the literature, the first-order shear deformable beam/plate theory
is used, in which the effects of interface peel and shear stresses on the crack tip deformation of the beam are
ignored (Chatterjee et al., 1986). As a matter of fact, there exists severely concentrated peel and shear
stresses along the interface near the crack tip due to the edge effect (Wang and Qiao, 2004b). The large
interface stresses at the crack tip can affect the local deformation significantly (Tsai et al., 1998) and make
the local deformation at the crack tip very complicated. As a result, the deformation at the crack tip is
underestimated by this model. Higher order or multi-layer sub-laminate model can be used to improve the
accuracy; however, as a cost, the simplicity in the solutions will be lost.

In this study, with the aim to derive simple closed-form solutions, a novel conception of “interface
compliance” first used by Suhir (1986) is employed. As shown in Fig. 3, the real deformed cross-section of
each sub-layer is nonlinear, which deviates from the linear one assumed in the first-order shear deformable
theory (Wang and Qiao, 2004b). Similarly, Suhir (1986) assumed that the deviation of deformation at any
point of the sub-layer interface between the real and the assumed ones using beam theory is proportional to

Fig. 3. Displacement continuity conditions along the interface of sub-layers.



7428 P. Qiao, J. Wang | International Journal of Solids and Structures 41 (2004) 7423-7444

the interface stress at that point. Therefore, the displacement continuity along the bi-layer interface has
additional contributions from the interface stresses which are taken into account by using two interface
compliance coefficients, and is given by (Fig. 3):

wi(x) = Ca10 = wa(x) 4+ Co (4)

0) = 5 (0) = Gt = 1) + 2 ) + Co )

where C,; and C; are the interface compliance coefficients of layer i under the peel and shear stresses,
respectively, which account for the contribution of interface stresses to the displacement components at the
interface of two layers. The existing sub-laminate model (Armanios et al., 1986; Chatterjee and Ramnath,
1988; Zou et al., 2001; Wang and Qiao, 2004c¢) is a special case of Egs. (4) and (5) by assuming the interface
compliance coefficients are zero, implying a semi-rigid joint condition, in which only the root rotation is
permitted. As a result, the deformation at the crack tip is underestimated (on the rigid side) by the existing
sub-laminate model.

It is interesting to point out that the present approach (Egs. (4) and (5)) in accounting for the effects of
interface shear and peel stresses on deformation is similar to a beam on elastic foundation model (Kan-
ninen, 1973, 1974; Williams, 1989), in which the additional deformations due to the interface stresses are
captured as “elastic foundation effect” with two foundation stiffnesses. However, the beam on elastic
foundation model can only model one sub-beam, while the present study of Egs. (4) and (5) can model the
coupled effects of two sub-layers, and therefore, it is capable of modeling a general mixed mode fracture. In
this sense, the present model can be viewed as a generalization of the beam on elastic foundation model.
Two interface compliance coefficients can be determined through a semi-analytical and semi-numerical
calibrating process as in the elastic foundation model (Corleto and Hogan, 1995). As recently demonstrated
by Wang and Qiao (2004a), a good estimation of these two compliances is given by

h; h;

=—2 =—3 (6)
15G!)

ni si

10EY)’

where Egg) (i = 1, 2) is the through-the-thickness Young’s modulus of layer i. Substituting the first equation
in Egs. (1) and (2) into the second equation of Eq. (5) and differentiating with respective to x yield:

d’N, Ny I
—— — bKyN; + bKEM| = —bK | — + — M, 7
a2 NNy + bK M, <A2+2D2 T (7)
where
1 1 h h 1 1 h hy)h
R S N S ) W - S S S G o Y
Cy +Cp Cui + Co 2D, 2D, A A 4D,

Substituting the third equation in Egs. (1) and (3) into Eq. (4) and differentiating two more times with
respect to x result in:

d*M, h d&*N 1 1\dM bnK, /1 1\d&N 1 1
) e o (5

At T2 At B, ' B,) dx? 2 \B, "B,/ d D, ' D,
b(h] + hz)Kn . bK My
+ D, N = D, (8)

Combining Egs. (7) and (8), the governing equation of a bi-layer beam system is established as:

d°n, d*n, d’n,
ag —+ ap

dx® dx* dx?

+(10N1 +aMMT+aNNT:0 (9)
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where
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Eq. (9) has the same form as the adhesive joint model (Bruno and Greco, 2001). However, in the adhesive
joint model, a virtual elastic interface is required with two interface stiffness constants which are served as
penalty factors. There is no physical meaning in the interface stiffness constants, and these values are chosen
for the convenience of calculation. However, K and K, in this study have a concrete physical implication,
and they account for the deformation caused by the interface shear and peel stresses, respectively. Their
values can be determined using Eq. (6).

3. Mechanics of crack tip element
3.1. Forces and stresses

The governing differential equation (Eq. (9)) derived in Section 2 can be solved using the characteristic
equation:

X tapt+ax+a =0 (11)

The roots of the above equation for the real material and geometry parameters can be expressed for two
cases ((a) and (b)) as: (a) =R, £R, and £R;, or (b) R, and £R; + iR;. Here R}, R, and R; are positive real
numbers and i = v/—1. In the following, the interface solutions (e.g., N; ) of Eq. (9) based on Cases (a) and
(b) are provided.

Case (a): R, £R, and %R;

N; in Eq. (9) is expressed as:

3 6
N, = Z cie R 4 Z ce®™ + Ny (12)
i=1 i=4
where ¢; (i=1,2,...,6) are the unknown coefficients to be determined by the boundary and continuity

conditions. Note that compared to the thickness of the beam, the length of uncracked portion of the bi-
layer system is relatively large. Therefore, the terms with positive power in the above equation can be
neglected. As a result, we have:

aSie ™ + Mie, 01 =

3
1 i=1

3
N = ZcfefR"x—FNlc, M, =

3
i=1 i=

aiTe ™ + Qic (13)

and
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R 1 g R1 9 h
Si - PR T;:Rl _: T 7 ) .:17273
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Nie=—2M — 22N, Mie=2Ne—=( L+ 2M, ==
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Considering the overall equilibrium conditions of Eq. (3), we obtain:
: —Rix : hl + hz —Rix
NZ(X)Z_;CI'C 4+ Nac, Mz:—; S + 3 cie " + My,
3
Ox(x) = — ZCinefR‘x + Oxc (14)
=1
where
hy+h
Nac = Nr =Nie,  Qac = 0Qr = Qic; Mac =My — Mic === Nic

and Njc, M;c, and Q)¢ are the internal forces of layer 1 based on the conventional composite beam theory
(Suo and Hutchinson, 1990). Eq. (13) shows that the resultant forces of sub-layers are composed of two
parts: (1) the exponential terms, which decay very fast, representing the local effect; and (2) the stable-state
terms (i.e., Nyc, Mic or Q;c) from the conventional composite beam solution. At a distance sufficiently far
away from the crack tip, the exponential terms are negligible, and the present solution of beam forces in Eq.
(13) is therefore reduced to the solution of conventional composite beam theory (Suo and Hutchinson,
1990).
The following conditions at the joint (x = 0) are given as:

Ny =Ny, My =My, 0O1=0w (15)
Then, the coefficients (¢;, i = 1-3) are obtained as:
¢ i Cn C13 N S$L-5T -1 $H—8 N
o | =1 ¢y cn e M =7 SS—-8T T —T; S;3-—S; M (16)
s 1 Cn 0 ST =8 Lh-T1 $i—$% 0
where Y = ST — ;7 — ST + 87, + 8115 — S,T; and
N =Nig = Niclegpy M =Mg—Mcl|,_y, O= 00— Oiclip (17)

By using equilibrium equation (Eq. (1)), the interface stresses (i.e., peel and shear) are given by:

3

1 3 3 ’
<NZR"TicfleRix + MZRiT;'CiZCiRix + QZR,—T,—c,geR’*) +oc

o = ?
i=1 i=1 i=1

(18)
1

T = ? <N ZR,‘C,‘]CiRiX + M ZRiCizeiRix =+ QZRiCi3eRix> + T¢
i=1 i=1 i=1

Similar to the resulting forces, the interface stresses are expressed in two parts: (1) the exponential terms
representing the local stress concentration near the crack tip, and (2) the rest of terms based on the con-
ventional composite beam solution (i.e., o¢c and 7¢).
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Case (b): £R, and £R, £+ iR;

Similarly, we can obtain the resultant force solutions for this case as:
N; = cre " 4 e (cy cos (Ryx) + ¢ sin (R3x)) + Nie
M, = c1S1e *1* 4 €7 (5 (S; cos(R3x) + S5 sin(Rsx)) + ¢3(S5 cos (R3x) + Sy sin (Ryx))) + M ¢ (19)
01 = i Tie ™" + €% (cy(Ty cos (Rs3x) + T sin (R3x)) + ¢3(T3 cos (Ryx) + Ts sin (R3x))) + Q¢

where
R? R2 — R? 2R,R
Sl = — L + ﬁ, S2 =2 3 ﬂ 3 = s
¢bKs ¢ ¢bKs ¢ ¢bK
h] hl hl
Ty =—-RiS — ?RI, I = —RyS + S3R3 — 7R2, T3 = —RyS3 + SHoR3 — ERs (20)
The coefficients of integration ¢; are determined by the boundary conditions (Eq. (15)) as:
c cnocnnocn3 N | (3T —5T T; =53 N
Cy = Co1 Cry C23 M :? S1T3 —S3T1 —T3 S3 M (21)
e 1 €3 Cx 0 STT=8T, L-T1 §—% 0

where ¥ = —S3T1 + S3T2 + Sl T3 — SzT';
3.2. Deformation at crack tip
The deformation at the joint can be obtained from the constitutive law in Eq. (2) and the above solutions

of resultant forces of each layer. As an illustration of this process, the rotation of layer 1 at the joint is
calculated for Case (a) as:

L L
M] l C]Sl C2S2 C3S3 MlC
L)—¢(0)= | —dx=—(—"+"—+—" ——dx 22
60 - 00 = [ Prav—p (SR ) s [0 22)
Note that:
L

M

S dx = (L) = dic(0) (23)
0 1

where ¢, is the rotation angle based on the conventional composite beam theory. When L is relatively
large, we have:

$1(L) = (L) (24)
Therefore:
$10(0) — ¢,(0) = A (0) = SN + SnM + S0 (25)
where
I (eS| cuSy ¢3S .
= =1.2 2
Shi D < R + R, + R ), 1 ,2,3 ( 6)

Following the same procedure as above, we express the deformation of the elastic joint as:
AU(0) = Uc(0) — U(0) = SF (27)
where U(0) = {u;(0), ¢,(0), w1 (0), u2(0), $,(0), w»(0)}" represents the displacement components at the

crack tip of this study; Uc(0) = {u1¢(0), d;(0), wic(0), tac(0), o (0), wac(0)}" represents the displace-
ment components at the crack tip based on the conventional composite beam model;
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Auy

(b)

Fig. 4. Joint (crack tip) deformation. (a) Conventional rigid joint; (b) present flexible joint.

AU(0) = {Au;(0), A, (0), Aw;(0), Aus(0), Ag,(0), Aw,(0)}" are the difference between the conventional
composite beam model and the present study; F = {N, M, Q}T is the loading matrix defined in Eq. (17).
S = {S;;}¢x; 1s a matrix representing the local deformation compliance at the crack tip and given in
Appendix A.

Eq. (27) provides a new continuity condition at the crack tip that is more realistic than that in the
conventional composite beam (rigid) model used commonly in the literature (Suo and Hutchinson, 1990)
(Fig. 4). As shown in Fig. 4(a), the deformations of each sub-beam at the crack tip are constrained in the
conventional rigid joint model such that the deformed cross-section at the crack tip still remains a plane,
i.e., the whole joint deforms like a rigid body. On the other hand, the present model (Fig. 4(b)) releases this
constraint on the deformations at the crack tip and allows each sub-beam to have different displacement
components u;, w; and ¢, at the crack tip. As a result, the joint behaves like a flexible body, and therefore
Eq. (27) is referred to as a flexible joint model in this study.

3.3. Special case: a symmetric bi-layer beam

As an illustration, a simple case of symmetric bi-layer beam is studied in this section. Note that when the
two sub-beams have the same material and geometry, i.e., the bi-layer beam is symmetric (¢ = 0), and the
governing equation (Eq. (7)) is decoupled, thus:

d;JC\zﬁ — bK,yN; = —bK, ( ]Z—; + 2h—52MT> (28)
The axial force can be obtained as:

N, = cie P 4+ Nyc (29)
where

k] =1/ st}’] (30)

Substituting this solution to Eq. (8), we have:

M1 = Czeikzx + C3Cik3x + SCleiklx + MlC (31)
—krx —k3x hl —k1x
Ql = —02k2€ 2 — C3k3e S +? c]kle v QIC (32)

where
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bKn(B%JrBLz) + ¢(bKn(é+i))2_4bKn(i+oﬁ)
2

kas = (33)
b o4 DKakPRD (4 1 bKn(hy+hy)h?
so M i) (34)
K = 02K (4 5 )it + b (4 1)
The coefficients of integration ¢; are determined by the boundary conditions (Eq. (15)) as:
C e cnoc3 N 1 ky — k3 0 0 N
C) = Cy1 Cpp (23 M = k A _(kl - k3)S - hflkl _k3 -1 M (35)
2 — K3

3 €1 o €33 0 (ki —k)S+%k k1 0

The deformation at the crack tip can be expressed by Eq. (27). However, the compliance matrix is different,
and it is given by the Case (c) in Appendix A.

3.4. Numerical verification

To verify the above solutions, the deformations at the joint of three simple split beam configurations are
examined by the present method and finite element analysis (FEA): (a) a symmetric double cantilever beam
(DCB) under unit mode I (open) loading (Fig. 5(a)) with E, = E, =1,v; =v, =03 and &, = h, = 1; (b) an
asymmetric double cantilever beam (ADCB) specimen under mode I loading (Fig. 5(a)) with E; = 5E; =5
and other parameters are the same as Case (a); and (c) an end loaded split (ELS) specimen under mode 11
loading (Fig. 5(b)) with the same parameters as Case (a). In order to avoid the boundary effect of applied
loadings, the geometries in Fig. 5 are chosen as a/h; = 16, a/L = 1. The specimens are modeled by a
commercial finite element package ANSYS (1998) as a 2-D problem with 8-node structural plane element
(PLANES2). As demonstrated by Table 1 and deformed cross-section (the axial displacement) at the crack
tip sketched in Fig. 6, excellent agreements between the present method and FEA have been achieved.
Significant rotations at the joint are captured by the present model for the DCB and ADCB specimens;
while in the conventional composite beam model, zero joint (crack tip) rotation is assumed. The peel and
shear stresses along the interface of two layers are also obtained and presented in Fig. 7. Highly close
agreements between the present study and FEA are observed, implying that the present model has an
excellent ability to evaluate the interlaminar stresses.

The rotation at the joint plays a significant role in the crack tip element analysis and is of great concern
to many researchers (Corleto and Hogan, 1995; Li et al., 2004; Wang and Qiao, 2004b). A highly accurate
estimation of rotation at the joint (crack tip) is very desirable, although very few results are available in the
literature. Sun and Pandey (1994) obtained a solution of the root rotation at the joint for an isotropic

Z z
P, [y P 4
"Eh RN : ,‘ h} ? L ."'E},'“.V-f NN .:‘7 : h‘
Ez vs v ¥y E2vs v he
s/
P" /
P a L L _ a T
- - - - - =
(a) (b)

Fig. 5. Specimens under examination. (a) DCB or ADCB specimen; (b) ELS specimen.
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Table 1
Displacements and rotations at the joint (present solution and FEA)
Specimen ElhlAul/P Ell’l]Auz/P E]hlAWI/P Ell’llAWZ/P Elh%Ad)l/P E]h%A(JSz/P
DCB Present 0.0 0.0 18.3 -18.3 128.8 —-128.8
FEA 0.0 0.0 20.7 -20.7 131.4 -1314
ADCB Present 9.74 -1.95 0.54 -20.3 93.0 —42.0
FEA 7.88 -1.78 1.64 —-18.98 97.0 —41.3
ELS Present 2.5 -2.5 0.0 0.0 14.9 14.9
FEA 4.16 —4.16 0.0 0.0 13.3 13.3
80 60
FEA FEA
L o — o— Present Analytica 401 — + — Present Analytica
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E 0 E \
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-800 4
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Fig. 6. Comparisons of joint deformation between the present solution and FEA. (a) DCB, (b) ADCB, (c) ELS.

homogeneous split beam under opposite bending moments through an approximate 2-D elastic analysis.
The rotation angles obtained by their solution and the present study are shown in Fig. 8 for a range of layer
thickness ratios from 0.2 to 5. It can be seen that the present solution is very close to the rotation by the 2-D
elastic analysis (Sun and Pandey, 1994). For a general bi-layer situation when the layers are made of
different materials and subjected to general loading, there is no analytical solution available in the litera-
ture. Recently, Li et al. (2004) obtained a numerical solution of rotation through finite element analysis for
isotropic bi-layer joint. In their solution, the rotation at the crack tip is expressed in the same fashion as in
Eq. (25). Unlike the present closed-form solution, three nondimensional coefficients in Li et al. (2004)
(cp, car and ¢/, in their notation as given by the equation in Fig. 9) were obtained by conducting parametric
finite element analysis. In Fig. 9, « is Dundurs’ (1969) parameter and given by (E,/E, — 1)/(E|/E; + 1).
Fig. 9 compares the solution by the present study with the coefficients which are determined and noted in
the fashion given in Li et al. (2004). An excellent agreement between the present solution and the one by Li
et al. (2004) is achieved for the coefficients of the bending moments. Some differences exist for other two
coefficients, but the trend is the same. Noting that the bending moment is the most significant loading in
rotation, the present solution generally produces very close results to these by FEA.
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Fig. 7. Interface stresses obtained from the present solution and FEA. (a) DCB, (b) ADCB, (c) ELS.

4. Interface fracture analysis
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Fig. 8. Comparisons of rotation with different thickness ratios.

Interface cracking is one of common failure modes in multi-layered structures. Typical exam-
ples include delamination of composite laminates, debonding of adhesive joints, and decohesion of
thin films from substrates. Fracture mechanics principles have been widely employed to assess this
type of failure mode in which it is necessary to extract the mode mix of energy release rate (ERR) G
and stress intensity factor (SIF) K at the crack tip in order to successfully predict the growth of crack.

Classical beam theory was used in deriving the linear elastic fracture mechanics (LEFM) parameters of
interface crack of bi-layer structure in the literature (Suo and Hutchinson, 1990; Schapery and Davidson,
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Fig. 9. Coefficients of rotation for beams with different Dundurs’ (1969) parameters ().

1990). However, the effect of transverse shear is not considered in the classical model. A transverse shear
force exists at the crack tip in most bi-layer interface fracture problems, such as in a double cantilever beam
(DCB) specimen; thus, it has a notable contribution to the ERR and SIF (Gillis and Gilman, 1964;
Mostovoy et al., 1967; Kanninen, 1973, 1974). As a matter of fact, the shear deformation effect on the ERR
for anisotropic materials with relative low transverse shear modulus such as polymer matrix composite
laminates is even more significant as shown in Bruno and Greco (2001) where the portion contributed by
the shear deformation was found to be more than half of the total ERR for an orthotropic double can-
tilever beam specimen. Therefore, it is necessary to account for the contribution from the shear deformation
to the ERR, especially when the materials with relative low transverse shear modulus and moderate
thickness are concerned. Intensive studies have been carried out to incorporate the transverse shear
deformation into the interface fracture expressions (Suo et al., 1991; Bao et al., 1992; Sun and Pandey,
1994; Williams, 1987; Point and Sacco, 1996; Bruno and Greco, 2001; Nilsson et al., 2001). Recently, Wang
and Qiao (2004b) presented explicit closed-form solutions of the ERR and SIF which account for the effect
of transverse shear force through a novel split beam model based on the first-order shear deformable beam
theory. This solution by the shear deformable bi-layer beam theory (Wang and Qiao, 2004b) provides
improved and simplified closed-form expressions for the ERR and SIF under the general loading condi-
tions. Compared with a recent numerical analysis carried out by Li et al. (2004), the solution by Wang and
Qiao (2004b) still underestimates the ERR, which can be attributed to that the split model used in the
formulation is still a semi-rigid joint model. Based on the aforementioned formulation in Section 3, a more
flexible split beam or joint model is introduced by the proposed interface deformable bi-layer beam theory,
and a more accurate solution of joint deformation obtained is used in this section to derive the ERR, SIF,
and mode mixity of interface fracture in a bi-layer beam system.

4.1. Interface fracture parameters

The superposition approach is used in this study to obtain the solution, in which the fracture problem
in Fig. 10(a) is divided into two sub-problems of Fig. 10(b)—an uncracked bi-layer beam and Fig.
10(c)—a cracked bi-layer beam only under self-equilibrated forces M, N and Q. Since the uncracked bi-
layer beam in Fig. 10(b) produces no ERR, the ERR of Fig. 10(a) equals to that corresponding to Fig.
10(c).



P. Qiao, J. Wang | International Journal of Solids and Structures 41 (2004) 7423—7444 7437

Qo
My
Nio 1—6& T
Mr
Noo My
Qag, Nr
Delamination
(a) |
Oic M Cr— .
Mc H
Nic 1-% ‘o N _L Z b A
Mr M NN
Bl M‘Qz v @| kb\\X\a\\ \\
O L Nr Q N ®
Delamination [~
M =Ny + hy)/2
(b) + (c)

Fig. 10. Equivalent problem of bi-material interface fracture.

The J-integral is used to calculate the energy release rate at the crack tip. A closed path surrounding the
crack tip shown in Fig. 10(c) is chosen as the integrating path. The J-integral can be calculated by (Fraisse
and Schmit, 1993):

1 [ N? 22 M2 =0
Je=- Ly B M T 2 36
> <C1 + e 2 4+ +Bz +D1 + 520161 - Q2¢2) » (36)
Substituting the boundary conditions at x = 0 and L of the problem in Fig. 10(c), Eq. (36) becomes:
1 1 1
=3 (CNN + CyM* + CyyMN + (Bl +32>Q 20(¢,(0) - (f’z(o))) (37)
where
11 (k) IR it h
CN—a+6+47D2, CM—D—1+D—2, CMN—D—2 (38)

in which the loading parameters M, N, Q are defined by Eq. (17).

It can be seen that the ERR depends not only on the three loading parameters but also the relative
rotation at the joint (crack tip). Eq. (37) clarifies the major argument made by Li et al. (2004) on the effects
of transverse shear on interface fracture in the layered materials. In their study, Li et al. (2004) pointed out
that the crack tip deformation only affects the shear components of the ERR. In this study, two terms of the
transverse shear Q are present in Eq. (37) which represent the transverse shear components of the total
ERR of the interface fracture: (a) the far-field part (1/B; + 1/B,)Q?/2 which is the contribution of the shear
deformation in the cracked region, and (b) —Q(¢,(0) — ¢,(0)) which is the contribution from the shear
deformation in the uncracked region of a bi-layer beam. Only the latter part (Part (b)) of the transverse
shear component is dependent on the local deformation at the crack tip, and more exactly, only dependent
on the relative rotation of two sub-layers at the crack tip. It should be noted that the local deformation is
not physically a contributor to the ERR. As a matter of fact, the relative rotation in Eq. (37) is a reflection
of the complex local stress field, and it disappears once the conventional composite beam model is used.
Therefore, the appearance of local deformation in the ERR is the result of the effect of interface stresses
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which is ignored in the conventional composite beam model, and thus more transverse shear contribution
to the ERR is captured by Eq. (37).

Substituting the solution of rotation at the crack tip (Eq. (25)) obtained in the previous section into Eq.
(37), we have:

1 M
J=3 (CyN? + CoQ* + CyM? + CyyMN + CyoNQ + CroMOQ) (39)
where
1 1
Co = B_1+B_2 + 83 =855, Cno =381 —3Ss51, Cpp=38n—"5% (40)

Compared with the previous study of Wang and Qiao (2004b), the coefficients given in Eq. (40) are larger;
thus, the previous study tends to underestimate the ERR.
The energy release rate can be related to the stress intensity factor (Suo, 1990) as:
Hy 2

= Teost () e

Based on the dimensional consideration and linearity, the complex stress intensity factor K can be written in
the form:

. . . iy _iainm L —ig jim
K=K +ik, = ( CyN — i€ \/CyuM — ie \/CQQ) Jhite (42)
where w is defined in the same way as in Suo and Hutchinson (1990) and
sin(y,) = ———, sin(y,) = ——— 43
It is convenient to use the combination KA¥ as suggested by Rice (1988) and define:
1(;1'18 =K +1iKy = |K|ei¢ (44)
Then the stress intensity factors are given by:
K= % ( CyN cos() + / CyM sin(w + p;) + 1/ CoQOsin(w + yz)) (45)
Ky = % ( CyN sin(w) — \/CyyM cos(w + ;) — 1/ CpoQ cos(w + Vz)) (46)
The phase angle v defined is given by:
[ VCyNsin(w) — /CyM cos(w + 7,) — /CpQ cos(w + 7,)
W = tan - - (47)
VCyN cos(w) + +/CyM sin(w + 7;) + /CoQsin(w + 7,)
where
1 1-
¢=5- In (ﬁ)a B = ([vsus3 + s3], — [Vsisss + si3)y) /v HiHas
Hy = [0 fsiiss |+ [2ndbss| |, Ha = 2027 s |+ (20074 siss) | (48)

and f is the generalization of one of Dundurs’ (1969) parameters for isotropic materials and ¢ is the bi-
material constant. The subscripts “1°” and “2”° used outside the square brackets in the above expressions
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refer to the materials of top and bottom layers, respectively. The nondimensional parameters 1 and » are
given by:

S11 1 1 (2513 +S33>
A=—, n=1/=(14+p), = ———= 49
S33 2 (+p), p 2\ \/S11533 “9)

where s;; are the material compliance and defined in the conventional fashion.

It can be found that Eqgs. (45)—(47) can be reduced to the expressions given in Suo and Hutchinson (1990)
if the transverse shear force Q is neglected. In other words, the present results of Egs. (45)—(47) can be
regarded as a straight extension of Suo and Hutchinson’s results (1990) which ignore the transverse shear
deformation to shear deformable materials. This indicates that the present solution is an improvement of
the classical results, and it accounts for the transverse shear deformation in the closed-form solution.

4.2. Comparison and verification

Li et al. (2004) carried out a systematic numerical study of interface fracture in layered materials using
finite element analysis. Essentially the same expression as Eq. (39) was obtained in their study but the
coefficient Cy (f, in their notation) was obtained numerically. The phase angle was calculated through a
tedious vector addition process with the aid of an auxiliary angle obtained numerically. Due to the com-
plexity of the interface fracture, especially the effect of f, their solution is only valid to the very simple bi-
material interface fracture where the most troublesome, however, inherited feature of interface fracture,
oscillation is not present (i.e., f = 0) and both materials at the bi-layer interface are treated as isotropic. As
a comparison, the current analytical solution is applicable in more general situations where the materials
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Fig. 11. Comparison of interface fracture parameters for an ADCB specimen. (a) Energy release rate; (b) phase angle.
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Table 2
Cy determined by the present solution and finite element analysis (Li et al., 2004)
o H
0.2 0.4 0.6 0.8 1.0
Present FEA Present FEA Present FEA Present FEA Present FEA
-0.8  1.807 1.635 1.800 1.645 1.813 1.663 1.834 1.684 1.861 1.711
-0.6  1.852 1.687 1.840 1.708 1.866 1.739 1.906 1.781 1.952 1.829
-04  1.897 1.753 1.894 1.784 1.926 1.836 1.985 1.898 2.049 1.968
-0.2  1.949 1.833 1.939 1.881 1.997 1.954 2.078 2.037 2.163 2.127
0.0 2.009 1.940 2.006 2.009 2.090 2.106 2.191 2.217 2.304 2.335
0.2 2.199 2.089 2.226 2.186 2.350 2314 2.497 2.460 2.650 2.605
0.4 2.452 2.300 2.531 2.439 2.717 2.619 2.924 2.809 3.133 3.003
0.6 2.839 2.654 3.017 2.865 3.305 3.125 3.608 3.394 3.905 3.665
0.8 3.636 3.412 4.061 3.800 4.583 4.250 5.069 4.704 5.583 5.127

are orthotropic and oscillation is present. The loading parameters for an ADCB specimen shown in Fig.
11(a) are given by Eq. (17) as:

N=0, M=-Pa, Q=-P (50)

The interface fracture parameters for this case can then be obtained by Egs. (39) and (47) as:

P2
G = ? (CMCI2 + CMQCZ + CQ) (51)

(52)

J = —tan"! Cyacos(w+17,) 4+ 1/Cocos (w + 7,)
Cyasin (o + y,) + 1/Cosin (o + 7,)

Table 2 lists the Cy values obtained by the present analytical solution and finite element results of Li et
al. (2004). Generally, these two methods produce very close results and the difference between them is less
that 10%. It seems that the present method overestimates Cy a bit compared with those of Li et al. (2004).
This may be attributed to the value of Poisson’s ratio chosen in the analytical solution. In this study, a value
of Poisson’s ratio v = 0.3 is fixed for one material and the other ratio is chosen to make f§ = 0. The resulting
Poisson’s ratio is unrealistically large and used to calculate the shear modulus by using E/2/(1 +v).
Consequently, the transverse shear modulus is relatively small, and the material behaves like orthotropic.
As a mater of fact, the current analytical solution can predict almost the same results as the finite element
analysis if a realistic Poisson’s ratio is chosen in the calculation as shown in Fig. 11. A double cantilever
beam (DCB) specimen is studied in Fig. 11 by the present analytical solution which is compared with the
finite element results of Li et al. (2004). A value of 0.3 for Poisson’s ratio is chosen for both the materials.
Both the ERR and phase angle predicted by the present method are in excellent agreements with the FEA
results with a maximum error of 1%. Note that the high accuracy of the present solution is valid for the
entire material mismatch ranging from o = —0.8 to 0.8.

5. Conclusions
In this study, a novel interface deformable bi-layer beam theory is proposed in order to accurately model

the crack tip deformation. A bi-layer beam with interface crack is modeled as two separate shear
deformable sub-layers bonded perfectly along the interface, and an interface deformable model which
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employs two interface compliances at the crack tip is used to account for the effects of the interface stresses
on the deformation of the sub-beams (i.e., elastic foundation effect). Closed-form solutions of deformation
at the crack tip are obtained. Excellent agreement with full 2-D elastic analysis is reached which validates
the accuracy of the present model. Improved solution and analysis of cracked beam are resulted by using
the present model. Compared to the rigid joint model based on the conventional composite beam theory
(Suo and Hutchinson, 1990; Schapery and Davidson, 1990) and the semi-rigid joint model based on the
shear deformable bi-layer beam theory (Wang and Qiao, 2004b), the present flexible join model using the
interface deformable bi-layer beam theory shows its accuracy in modeling the actual deformation at
the crack tip.

An expression of J-integral of interface fracture in a bi-layer beam is further derived which shows
that the shear component of the energy release rate (ERR) depends on the relative rotation of two
layers at the crack tip. By substituting the solution of crack tip deformation, closed-form analytical
solutions of the ERR and stress intensity factors (SIF) are obtained, for which the transverse shear
effect is fully accounted. High accuracy of the present solutions is demonstrated by the remarkable
agreements achieved in comparisons with the full elastic study using the finite element analysis for a
large range of material mismatch, thickness ratio and material orthotropy. The current solution pro-
vides an effective way to retrieve explicit and accurate interface parameters. Further, the interface
deformable bi-layer beam theory presented in this study provides analytical solutions for a flexible joint
model which can be used effectively in the bi-layer beam analyses (e.g., delamination buckling and
vibration, etc.).
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Appendix A. Compliance matrix of elastic joint in Eq. (27)
Case (a): The characteristic Eq. (10) with roots of =R, R, and +R;
S 1 Cli+02i+c3i F—1.2.3
i—= |\ 5 o YR =1,z
T4 \R TR R

1 ,'S jS [S .
Sy; _(Cl 1+Cz 2+03 3>7 i=1,2,3
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Si = i i iy = 17273
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Case (b): The characteristic Eq. (10) with roots of +R; and R, +iR;
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Case (c): Same material and geometry for both sub-layers
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